Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
BMC Med ; 20(1): 452, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2139290

ABSTRACT

BACKGROUND: Diagnostic testing has been pivotal in detecting SARS-CoV-2 infections and reducing transmission through the isolation of positive cases. We quantified the value of implementing frequent, rapid antigen (RA) testing in the workplace to identify screening programs that are cost-effective. METHODS: To project the number of cases, hospitalizations, and deaths under alternative screening programs, we adapted an agent-based model of COVID-19 transmission and parameterized it with the demographics of Ontario, Canada, incorporating vaccination and waning of immunity. Taking into account healthcare costs and productivity losses associated with each program, we calculated the incremental cost-effectiveness ratio (ICER) with quality-adjusted life year (QALY) as the measure of effect. Considering RT-PCR testing of only severe cases as the baseline scenario, we estimated the incremental net monetary benefits (iNMB) of the screening programs with varying durations and initiation times, as well as different booster coverages of working adults. RESULTS: Assuming a willingness-to-pay threshold of CDN$30,000 per QALY loss averted, twice weekly workplace screening was cost-effective only if the program started early during a surge. In most scenarios, the iNMB of RA screening without a confirmatory RT-PCR or RA test was comparable or higher than the iNMB for programs with a confirmatory test for RA-positive cases. When the program started early with a duration of at least 16 weeks and no confirmatory testing, the iNMB exceeded CDN$1.1 million per 100,000 population. Increasing booster coverage of working adults improved the iNMB of RA screening. CONCLUSIONS: Our findings indicate that frequent RA testing starting very early in a surge, without a confirmatory test, is a preferred screening program for the detection of asymptomatic infections in workplaces.


Subject(s)
COVID-19 , Workplace , Adult , Humans , Cost-Benefit Analysis , COVID-19/diagnosis , SARS-CoV-2/genetics , Ontario
3.
International journal of public health ; 67, 2022.
Article in English | EuropePMC | ID: covidwho-1990161

ABSTRACT

Objective: To quantify the utility of RT-PCR and rapid antigen tests in preventing post-arrival transmission based on timing of the pre-departure test. Methods: We derived analytical expressions to compute post-arrival transmission when no test is performed, and when either an RT-PCR or any of 18 rapid antigen tests is performed at specified times before arrival. We determined the diagnostic sensitivity of the rapid antigen tests by propagating their RT-PCR percent positive agreement onto known RT-PCR diagnostic sensitivity. Results: Depending on the rapid antigen test used, conducting a rapid antigen test immediately before departure reduces post-arrival transmission between 37.4% (95% CrI: 28.2%–40.7%) and 46.7% (95% CrI:40.0%–49.3%), compared to a 31.1% (95% CrI: 26.3%–33.5%) reduction using an RT-PCR 12 h before arrival. Performance of each rapid antigen test differed by diagnostic sensitivity over the course of disease. However, these differences were smaller than those engendered by testing too early. Conclusion: Testing closer to arrival—ideally on the day of arrival—is more effective at reducing post-arrival transmission than testing earlier. Rapid antigen tests perform the best in this application due to their short turnaround time.

4.
PNAS Nexus ; 1(3): pgac100, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1973239

ABSTRACT

Quarantine and serial testing strategies for a disease depend principally on its incubation period and infectiousness profile. In the context of COVID-19, these primary public health tools must be modulated with successive SARS CoV-2 variants of concern that dominate transmission. Our analysis shows that (1) vaccination status of an individual makes little difference to the determination of the appropriate quarantine duration of an infected case, whereas vaccination coverage of the population can have a substantial effect on this duration, (2) successive variants can challenge disease control efforts by their earlier and increased transmission in the disease time course relative to prior variants, and (3) sufficient vaccine boosting of a population substantially aids the suppression of local transmission through frequent serial testing. For instance, with Omicron, increasing immunity through vaccination and boosters-for instance with 100% of the population is fully immunized and at least 24% having received a third dose-can reduce quarantine durations by up to 2 d, as well as substantially aid in the repression of outbreaks through serial testing. Our analysis highlights the paramount importance of maintaining high population immunity, preferably by booster uptake, and the role of quarantine and testing to control the spread of SARS CoV-2.

5.
Commun Med (Lond) ; 2: 84, 2022.
Article in English | MEDLINE | ID: covidwho-1927107

ABSTRACT

Background: Rapid antigen (RA) tests are being increasingly employed to detect SARS-CoV-2 infections in quarantine and surveillance. Prior research has focused on RT-PCR testing, a single RA test, or generic diagnostic characteristics of RA tests in assessing testing strategies. Methods: We have conducted a comparative analysis of the post-quarantine transmission, the effective reproduction number during serial testing, and the false-positive rates for 18 RA tests with emergency use authorization from The United States Food and Drug Administration and an RT-PCR test. To quantify the extent of transmission, we developed an analytical mathematical framework informed by COVID-19 infectiousness, test specificity, and temporal diagnostic sensitivity data. Results: We demonstrate that the relative effectiveness of RA tests and RT-PCR testing in reducing post-quarantine transmission depends on the quarantine duration and the turnaround time of testing results. For quarantines of two days or shorter, conducting a RA test on exit from quarantine reduces onward transmission more than a single RT-PCR test (with a 24-h delay) conducted upon exit. Applied to a complementary approach of performing serial testing at a specified frequency paired with isolation of positives, we have shown that RA tests outperform RT-PCR with a 24-h delay. The results from our modeling framework are consistent with quarantine and serial testing data collected from a remote industry setting. Conclusions: These RA test-specific results are an important component of the tool set for policy decision-making, and demonstrate that judicious selection of an appropriate RA test can supply a viable alternative to RT-PCR in efforts to control the spread of disease.

6.
Lancet Infect Dis ; 22(9): 1254-1255, 2022 09.
Article in English | MEDLINE | ID: covidwho-1907935
7.
Lancet Public Health ; 7(6): e490-e491, 2022 06.
Article in English | MEDLINE | ID: covidwho-1867958
8.
Lancet Reg Health Eur ; 14: 100304, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1829133

ABSTRACT

BACKGROUND: Numerous countries have imposed strict travel restrictions during the COVID-19 pandemic, contributing to a large socioeconomic burden. The long quarantines that have been applied to contacts of cases may be excessive for travel policy. METHODS: We developed an approach to evaluate imminent countrywide COVID-19 infections after 0-14-day quarantine and testing. We identified the minimum travel quarantine duration such that the infection rate within the destination country did not increase compared to a travel ban, defining this minimum quarantine as "sufficient." FINDINGS: We present a generalised analytical framework and a specific case study of the epidemic situation on November 21, 2021, for application to 26 European countries. For most origin-destination country pairs, a three-day or shorter quarantine with RT-PCR or antigen testing on exit suffices. Adaptation to the European Union traffic-light risk stratification provided a simplified policy tool. Our analytical approach provides guidance for travel policy during all phases of pandemic diseases. INTERPRETATION: For nearly half of origin-destination country pairs analysed, travel can be permitted in the absence of quarantine and testing. For the majority of pairs requiring controls, a short quarantine with testing could be as effective as a complete travel ban. The estimated travel quarantine durations are substantially shorter than those specified for traced contacts. FUNDING: EasyJet (JPT and APG), the Elihu endowment (JPT), the Burnett and Stender families' endowment (APG), the Notsew Orm Sands Foundation (JPT and APG), the National Institutes of Health (MCF), Canadian Institutes of Health Research (SMM) and Natural Sciences and Engineering Research Council of Canada EIDM-MfPH (SMM).

9.
Clin Infect Dis ; 73(12): 2257-2264, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1596073

ABSTRACT

BACKGROUND: Global vaccine development efforts have been accelerated in response to the devastating coronavirus disease 2019 (COVID-19) pandemic. We evaluated the impact of a 2-dose COVID-19 vaccination campaign on reducing incidence, hospitalizations, and deaths in the United States. METHODS: We developed an agent-based model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and parameterized it with US demographics and age-specific COVID-19 outcomes. Healthcare workers and high-risk individuals were prioritized for vaccination, whereas children under 18 years of age were not vaccinated. We considered a vaccine efficacy of 95% against disease following 2 doses administered 21 days apart achieving 40% vaccine coverage of the overall population within 284 days. We varied vaccine efficacy against infection and specified 10% preexisting population immunity for the base-case scenario. The model was calibrated to an effective reproduction number of 1.2, accounting for current nonpharmaceutical interventions in the United States. RESULTS: Vaccination reduced the overall attack rate to 4.6% (95% credible interval [CrI]: 4.3%-5.0%) from 9.0% (95% CrI: 8.4%-9.4%) without vaccination, over 300 days. The highest relative reduction (54%-62%) was observed among individuals aged 65 and older. Vaccination markedly reduced adverse outcomes, with non-intensive care unit (ICU) hospitalizations, ICU hospitalizations, and deaths decreasing by 63.5% (95% CrI: 60.3%-66.7%), 65.6% (95% CrI: 62.2%-68.6%), and 69.3% (95% CrI: 65.5%-73.1%), respectively, across the same period. CONCLUSIONS: Our results indicate that vaccination can have a substantial impact on mitigating COVID-19 outbreaks, even with limited protection against infection. However, continued compliance with nonpharmaceutical interventions is essential to achieve this impact.


Subject(s)
COVID-19 , Adolescent , COVID-19 Vaccines , Child , Disease Outbreaks/prevention & control , Humans , SARS-CoV-2 , United States/epidemiology , Vaccination , Vaccine Development , Vaccine Efficacy
11.
Lancet Infect Dis ; 21(8): 1053-1054, 2021 08.
Article in English | MEDLINE | ID: covidwho-1164692
12.
EClinicalMedicine ; 33: 100761, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1131250

ABSTRACT

BACKGROUND: Black populations in the United States are being disproportionately affected by the COVID-19 pandemic, but the increased mortality burden after accounting for health and other demographic characteristics is not well understood. We examined characteristics of individuals who died from COVID-19 in Michigan by race stratified by their age, sex and comorbidity prevalence to illustrate and understand this disparity in mortality risk. METHODS: We evaluate COVID-19 mortality in Michigan by demographic and health characteristics, using individual-level linked death certificate and surveillance data collected by the Michigan Department of Health and Human Services from March 16 to October 26, 2020. We identified differences in demographics and comorbidity prevalence across race among individuals who died from COVID-19 and calculated mortality rates by age, sex, race, and number of comorbidities. FINDINGS: Among the 6,065 COVID-19 related deaths in Michigan, Black individuals are experiencing 3·6 times the mortality rate of White individuals (p<0.001), with a mortality rate for Black individuals under 65 years without comorbidities that is 12·6 times that of their White counterparts (p<0.001). After accounting for age, race, sex, and number of comorbidities, we find that Black individuals in all strata are at higher risk of COVID-19 mortality than their White counterparts. INTERPRETATION: Our findings demonstrate that Black populations are disproportionately burdened by COVID-19 mortality, even after accounting for demographic and underlying health characteristics. We highlight how disparities across race, which result from systemic racism, are compounded in crises. FUNDING: ASP, AP and APG were funded by NSF Expeditions grant 1918784, NIH grant 1R01AI151176-01, NSF Rapid Response Research for COVID-19 grant RAPID-2027755, and the Notsew Orm Sands Foundation. MCF was supported by NIH grant K01AI141576.

14.
Nat Commun ; 12(1): 356, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1015013

ABSTRACT

For COVID-19, it is vital to understand if quarantines shorter than 14 days can be equally effective with judiciously deployed testing. Here, we develop a mathematical model that quantifies the probability of post-quarantine transmission incorporating testing into travel quarantine, quarantine of traced contacts with an unknown time of infection, and quarantine of cases with a known time of exposure. We find that testing on exit (or entry and exit) can reduce the duration of a 14-day quarantine by 50%, while testing on entry shortens quarantine by at most one day. In a real-world test of our theory applied to offshore oil rig employees, 47 positives were obtained with testing on entry and exit to quarantine, of which 16 had tested negative at entry; preventing an expected nine offshore transmission events that each could have led to outbreaks. We show that appropriately timed testing can make shorter quarantines effective.


Subject(s)
COVID-19/diagnosis , Quarantine , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Contact Tracing , Humans , Models, Theoretical , Probability , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Time Factors
15.
CMAJ ; 192(43): E1315-E1322, 2020 10 26.
Article in French | MEDLINE | ID: covidwho-962944

ABSTRACT

CONTEXTE: La hausse des cas de maladie à coronavirus 2019 (COVID-19) au Canada peut créer une forte demande de soins hospitaliers et de soins intensifs. Nous avons évalué la mesure dans laquelle l'isolement volontaire des personnes présentant des symptômes légers retarde le sommet épidémique et réduit la demande de soins dans chaque province canadienne. MÉTHODES: Nous avons conçu un modèle de calcul et fait des simulations de la propagation de la COVID-19 dans chaque province. À partir des estimations des caractéristiques de la COVID-19, nous avons évalué la demande de lits d'hôpital et de lits de soins intensifs en l'absence d'isolement volontaire en supposant une moyenne de 2,5 cas secondaires, et avons comparé des scénarios en faisant varier le taux d'isolement volontaire des cas légers 24 heures après l'apparition des symptômes. RÉSULTATS: En l'absence d'isolement volontaire, l'épidémie atteindrait son sommet dans la première moitié de juin, et il faudrait en moyenne 569 jours-lits de soins intensifs par 10 000 habitants. Avec un taux d'isolement volontaire de 20 %, l'atteinte du sommet serait repoussée de 2 à 4 semaines, et la demande de lits diminuerait de 23,5 %; avec un taux de 40 %, le sommet serait repoussé de 2 à 4 semaines supplémentaires, et la demande de lits connaîtrait une baisse de 53,6 %. En fixant le taux d'occupation actuel des lits de soins intensifs à plus de 80 % et le taux d'isolement volontaire à 40 %, la demande de lits demeure supérieure au nombre de lits disponibles. INTERPRÉTATION: Au sommet de l'épidémie de COVID-19 au Canada, la demande de lits de soins intensifs excédera le nombre total de lits disponibles, même avec un taux d'isolement volontaire de 40 %. Nos résultats montrent que la situation sera difficile pour le système de santé et que l'isolement volontaire pourrait réduire la demande de soins hospitaliers et de soins intensifs.

16.
medRxiv ; 2021 Jan 02.
Article in English | MEDLINE | ID: covidwho-955700

ABSTRACT

BACKGROUND: Global vaccine development efforts have been accelerated in response to the devastating COVID-19 pandemic. We evaluated the impact of a 2-dose COVID-19 vaccination campaign on reducing incidence, hospitalizations, and deaths in the United States (US). METHODS: We developed an agent-based model of SARS-CoV-2 transmission and parameterized it with US demographics and age-specific COVID-19 outcomes. Healthcare workers and high-risk individuals were prioritized for vaccination, while children under 18 years of age were not vaccinated. We considered a vaccine efficacy of 95% against disease following 2 doses administered 21 days apart achieving 40% vaccine coverage of the overall population within 284 days. We varied vaccine efficacy against infection, and specified 10% pre-existing population immunity for the base-case scenario. The model was calibrated to an effective reproduction number of 1.2, accounting for current non-pharmaceutical interventions in the US. RESULTS: Vaccination reduced the overall attack rate to 4.6% (95% CrI: 4.3% - 5.0%) from 9.0% (95% CrI: 8.4% - 9.4%) without vaccination, over 300 days. The highest relative reduction (54-62%) was observed among individuals aged 65 and older. Vaccination markedly reduced adverse outcomes, with non-ICU hospitalizations, ICU hospitalizations, and deaths decreasing by 63.5% (95% CrI: 60.3% - 66.7%), 65.6% (95% CrI: 62.2% - 68.6%), and 69.3% (95% CrI: 65.5% - 73.1%), respectively, across the same period. CONCLUSIONS: Our results indicate that vaccination can have a substantial impact on mitigating COVID-19 outbreaks, even with limited protection against infection. However, continued compliance with non-pharmaceutical interventions is essential to achieve this impact.

19.
CMAJ ; 192(19): E489-E496, 2020 05 11.
Article in English | MEDLINE | ID: covidwho-46273

ABSTRACT

BACKGROUND: Increasing numbers of coronavirus disease 2019 (COVID-19) cases in Canada may create substantial demand for hospital admission and critical care. We evaluated the extent to which self-isolation of mildly ill people delays the peak of outbreaks and reduces the need for this care in each Canadian province. METHODS: We developed a computational model and simulated scenarios for COVID-19 outbreaks within each province. Using estimates of COVID-19 characteristics, we projected the hospital and intensive care unit (ICU) bed requirements without self-isolation, assuming an average number of 2.5 secondary cases, and compared scenarios in which different proportions of mildly ill people practised self-isolation 24 hours after symptom onset. RESULTS: Without self-isolation, the peak of outbreaks would occur in the first half of June, and an average of 569 ICU bed days per 10 000 population would be needed. When 20% of cases practised self-isolation, the peak was delayed by 2-4 weeks, and ICU bed requirement was reduced by 23.5% compared with no self-isolation. Increasing self-isolation to 40% reduced ICU use by 53.6% and delayed the peak of infection by an additional 2-4 weeks. Assuming current ICU bed occupancy rates above 80% and self-isolation of 40%, demand would still exceed available (unoccupied) ICU bed capacity. INTERPRETATION: At the peak of COVID-19 outbreaks, the need for ICU beds will exceed the total number of ICU beds even with self-isolation at 40%. Our results show the coming challenge for the health care system in Canada and the potential role of self-isolation in reducing demand for hospital-based and ICU care.


Subject(s)
Bed Occupancy/statistics & numerical data , Coronavirus Infections/therapy , Critical Care/statistics & numerical data , Hospital Bed Capacity/statistics & numerical data , Pneumonia, Viral/therapy , COVID-19 , Canada/epidemiology , Coronavirus Infections/epidemiology , Disease Outbreaks , Health Services Needs and Demand/statistics & numerical data , Humans , Models, Statistical , Pandemics , Pneumonia, Viral/epidemiology
20.
Proc Natl Acad Sci U S A ; 117(16): 9122-9126, 2020 04 21.
Article in English | MEDLINE | ID: covidwho-34058

ABSTRACT

In the wake of community coronavirus disease 2019 (COVID-19) transmission in the United States, there is a growing public health concern regarding the adequacy of resources to treat infected cases. Hospital beds, intensive care units (ICUs), and ventilators are vital for the treatment of patients with severe illness. To project the timing of the outbreak peak and the number of ICU beds required at peak, we simulated a COVID-19 outbreak parameterized with the US population demographics. In scenario analyses, we varied the delay from symptom onset to self-isolation, the proportion of symptomatic individuals practicing self-isolation, and the basic reproduction number R0 Without self-isolation, when R0 = 2.5, treatment of critically ill individuals at the outbreak peak would require 3.8 times more ICU beds than exist in the United States. Self-isolation by 20% of cases 24 h after symptom onset would delay and flatten the outbreak trajectory, reducing the number of ICU beds needed at the peak by 48.4% (interquartile range 46.4-50.3%), although still exceeding existing capacity. When R0 = 2, twice as many ICU beds would be required at the peak of outbreak in the absence of self-isolation. In this scenario, the proportional impact of self-isolation within 24 h on reducing the peak number of ICU beds is substantially higher at 73.5% (interquartile range 71.4-75.3%). Our estimates underscore the inadequacy of critical care capacity to handle the burgeoning outbreak. Policies that encourage self-isolation, such as paid sick leave, may delay the epidemic peak, giving a window of time that could facilitate emergency mobilization to expand hospital capacity.


Subject(s)
Coronavirus Infections , Disease Outbreaks , Hospital Bed Capacity , Hospitals , Intensive Care Units , Pandemics , Patient Acceptance of Health Care , Pneumonia, Viral , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Disease Outbreaks/statistics & numerical data , Forecasting , Hospitals/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Models, Theoretical , Patient Acceptance of Health Care/statistics & numerical data , Patient Isolation , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , SARS-CoV-2 , Time Factors , United States
SELECTION OF CITATIONS
SEARCH DETAIL